气体流量计生产厂家

24小时在线服务
当前位置:2019亚洲杯下注 > 选型手册 >

污水处理电磁流量计瞬时和积累显示器设计

时间:2017/09/04来源:未知

         摘 要:先容了某电站污水处理厂污水处理工艺改造的设计过程。工作中为便于运行人员查看和统计污水的瞬时流量和累计流量。提出了在触摸屏上显示瞬时和累计流量有针对性的解决方案,通过实践运行并加以改进。结果显示在触摸屏上的两种流量显示,与电磁流量计显示一致。证明了污水处理工艺改造能够满足需要。

污水处理电磁流量计瞬时和积累显示器设计
 
         某电站北区污水处理站用于处理北区子项的的生活污水。包括两套3m 3 /h的处理设备,实现连续自动运行,无人值守。污水处理系统采用施耐德的昆腾系列 PLC 进行控制,包括 114CPU11302SCPU 模块、CPS11402 电源模块、DDI35300 离散输入模块、DRA8400 离散输出模块、ACI03000 模拟输入模块和 XBTF032110 触摸屏,实现污水处理设备的运行控制和运行状态显示。原污水处理站安装一台10m 3 /h的电磁流量计。污水处理的的瞬时流量、累积流量由电磁流量转换器实现。由于电磁流量转换器安装位置问题,不方便运行人员查看和统计记录,决定在在触摸屏上显示瞬时流量和累计流量。
 
1、对瞬时流量在触摸屏上数字显示的实现:
         原电磁流量计的瞬时流量模拟信号已通过 ACI03000 模拟输入模块第五通道(PLC的地址为30005)送入PLC控制系统,在触摸屏上可直接采用。实现方法为:在触摸屏上增加一个文本信息,信息地址为30005,变量数值范围为 0~4095。由于电磁流量计的测量范围为 0~10m 3 /h。所以在触摸屏上的数字显示表达式为XBT=10/4095*PLC。
 
2、对累积流量在触摸屏上数字显示的实现:
         对于累计流量,需要在PLC控制程序中通过对瞬时流量的换算累计后在触摸屏上进行显示。在 PLC 中增加一个累计流量计算程序段如下:
 
         设定定时器,根据污水流量变化较小的特点,采用一秒累加一次的方法。功能块 FBI2_5 显示一秒钟定时;功能块 FBI2_20、19、22 采集流量信号并将其转换为对应量程的实际流量值(流量单位为m 3 /h);计算一秒钟内的流量;每秒钟对累积流量变量(leiji )累加一次;在触摸屏上新建一个文本信息,信息对应变量leiji,文本数据选取 Decimal类型,长度选取 12 位,由于累积流量值已在 PLC 程序段转换为实际的流量值,故在触摸屏上文本信息显示表达式为XBT=1*PLC即可。将修改的 PLC 程序和触摸屏程序分别重新下载到 PLC 和触摸屏中,启动北区污水处理设备。查看在触摸屏上的瞬时流量和累计流量显示,瞬时流量显示与电磁流量计显示一致,累计流量开始累计。通过计算累计流量累计值正常。
污水处理电磁流量计瞬时和积累显示器设计
         经过近一月的运行和观察,在触摸屏上,瞬时流量和累计流量一直显示正常,将此项工作关闭。但经将近一年的时候,运行人员发现累计流量在32760m 3 时不再发生变化,而瞬时流量显示正常。使用笔记本电脑连接 PLC,监视程序的运行和对应变量的变化,发现瞬时流量(地址 30005)值正常,累积流量变量 leiji 为 36720 不发生变化,将变量leiji改为较小数值后,leiji又可以进行累计。经分析认为应是 PLC内部字节所限,由于 leiji 变量占用两个字节,所以 leiji 共有 16 位(二进制),除去一位符号位,leiji 变量的有效位为 15 位(二进制)其数值范围是-32768~32768。PLC 本身无法将 leiji 变量在其达到***大值后自动回零,只是保持不变,从而导致在触摸屏上累计流量显示为32760没有变化。但将leiji变量改为较小值时,又可以正常累计。

QQ截图20160805171400.png

电磁流量传感器的特性是:无压力损耗,不受速度、密度、温度、压力和传导率的影响,可以实现高精度测量。

流量计系统由以下组件组成:电源、信号调理、转换器、处理器、显示键盘和多个通信组件,比如无线,RS485/422,4-20毫安电流,HART。

 

电磁流量变送器——传感器工作原理

其工作原理基于法拉第电磁感应定律。这意味着带电导体通过一个磁场并切割磁力线时在管道两侧将会产生感应电动势。电磁场是由电流流经测量管外面的线圈产生的。感应电压的幅度直接与速度和导体的电导率、管道直径以及磁场强度的成比例,具体来说,大家可以将法拉第定律表述为 E = K x B x D x V,其中V表示导电流体的速度,B表示磁场强度,D表示测量管段的直径,E表示电极上的电压,而K是一个常数。B、D、K可以是固定值,因此方程简化为E与V的比例关系。

QQ截图20160805171651.png

大部分电磁流量计使用低频率方波来激励传感器线圈。可以是1/25、1/16,1/10或者1/4 电网频率,以及电网频率的一半。低频方波励磁的幅度不变,但改变电流流入流出线圈的方向。

 

传感器信号调理——模拟前端共模抑制比

共模电压必须被电磁流量计转换器所抑制,模拟前端电路在其中所起的作用***大。如果电路具有对于120 分贝共模抑制比,则0.28V 共模电压可以降低至0.28 μV,而如果共模抑制比是100 dB,则抑制为2.8 μV。

QQ截图20160809163136.png

共模信号中的直流成分可以通过对信号进行交流耦合或者校准得以消除。但是,共模信号中的交流成分即使经过抑制也会呈现为噪声成分,出现在放大器输出端。它无法简单地通过交流耦合消除。必须采取措施,否则可能影响噪声性能。在120 dB共模抑制比的情况下,0.1V噪声下降至0.1μV。在100 dB共模抑制比的情况下,该噪声仅能抑制到较低1μV,因此共模抑制比参数很重要。

 

电磁流量计——信号处理电路架构比较

虽然具体的实现方式可能有所不同,电磁流量计的传感器信号处理可以分为模拟同步解调和数字过采样两种主要方法。

模拟解调是一种传统的方法,但现今仍然在业内使用广泛。它通常使用前置放大器,带通滤波放大器,采样保持,同步解调,模数转换器和微控制器。

 

下图显示典型的模拟同步解调电路的信号链。传感器输出的微伏或毫伏级信号首先被集成仪表放大器或者分立器件搭建的仪表放大器放大。

QQ截图20160805171936.png

要点是,前置放大器需要可以尽可能多地放大信号,但同时有不能使用过大的放大倍数以至于受到共模影响而输出饱和。级的增益通常不大于10倍。交流耦合信号采用带通滤波器来进一步放大信号到伏级。被放大后的信号经过由微处理器控制逻辑时序的采样保持和减法放大器,消除杂散并使之成为直流信号。直流信号进入模数转换器,它通常是16位分辨率,速率为几千赫兹。16比特模数转换器采样这种伏级和直流输入来说足够好。由于硬件电路消除瞬态干扰,完成了信号解调,信号被电路放大的数百倍之多,16位在低采样率ADC通常足够。由于ADC输出数据频率较低,因此微控制器的数据处理需求量也不大。

 

数字过采样不使用带通滤波放大器、采样保持、差分放大器等中间级电路。在之前的模拟信号处理在数字域内被实现。因为ADC的采样率高,模拟信号被预处理的少,所以数字域中的计算处理量就很大。这种架构需要更强大的微处理器。过采样的方法具有明显的优势:更少的元器件,更低的信号链物料成本,差分模拟信号的鲁棒性,有可能利用的ADC的共模抑制比,更多的数字信号处理的灵活性,可以监视传感器瞬时特性。

 

传感器信号调理——模拟前端噪声预算

一个典型的电网供电的电磁流量计的灵敏度通常在150μV/(米/秒)到200μV/(米/秒)之间。用175μV/(米/秒)这个中间值为例,由于交替电流方向激励,传感器对0.01米/ s的流速的输出为3.5μVP-P。它需要模拟前端噪声小于1.75μVP-P来分辨。

QQ截图20160809163049.png

ADI提供很多低噪声仪表放大器,其中,AD8228折合到输入端噪声为0.5μVP-P,AD8220噪声0.94μVP-P。

对在信号链下游的ADC,建议把折算到放大器输入端的总噪声预算的三分之一分配给ADC。

 

模拟同步解调前端之前已经放宽对ADC噪声的要求,因为数百倍放大器的增益,通常采用16位ADC就足够。

 

数字过采样结构对ADC噪声性能有挑战性的要求,因为前置放大器增益通常不超过10倍,ADC必须有超过20+位分辨率的非常低的噪声。若要实时分辨0.005米/秒的流速,ADC必须至少有20.7位无噪声。

 

 

Demo测试

电路框图:伏到毫伏传感器输出信号首先由AD8228仪表放大器放大10倍,然后使用由AD8622组成带通滤波器放大50倍信号到伏级电平。经放大的信号通过使用采样和保持,AD8276减法放大器组成的同步解调电路成为直流信号,送到AD7192的Σ-△ADC。数字化的样本被送往从ADI的ARM Cortex-M3微处理器。微处理器还控制传感器线圈的激励,和各种输出信号,包括4-20mA电流,频率脉冲,并报警。隔离与ADuM744x 1千伏iCoupler数字隔离器实现的。

QQ截图20160809163419.png

评估结果:

下图显示了采用模拟信号同步解调架构的信号链包括所有的放大器和ADC噪声的噪声性能。电路板被连接到一个电磁流量信号模拟器。测试在每个ADC的输出数据速率各采集4096样本。结果显示±0.2%的典型峰 - 峰值分辨率即使在4800 赫兹 AD7192***高输出数据速率也能达到。

QQ截图20160809163727.png

 

系统校准测试结果

采用模拟信号同步解调架构的测试电路还在校准实验室里通过水流标定实验。它连接到一个电磁流量传感器。完整的信号处理前端电路,包括信号放大器输入级,带通滤波器,以及增益级和一个实际的流体系统进行测试。两块测试板在1米/秒至5米/秒范围内达到±0.2%的精度,0.055%重复性。

QQ截图20160809163835.png

 

过采样信号处理测试电路:

方案_2A

该方案使用数字过采样架构,消除了带通滤波器和同步解调等中间电路。 AD7172-2超低噪声24比特ΣΔ模拟数字转换器使得用一个比较低的外部放大器增益成为可能。的放大器增益这里是AD8220 JFET输入仪表放大器的10倍。OP07加匹配电阻分压器把AD8220的单端输出信号转换成差分信号给ADC,这样可以充分地利用ADC的共模抑制比来进一步衰减共模噪声。ADSP-BF504F数字信号处理器被用来处理数字算法,因为使用数字过采样的数据处理的工作量大很多。

 

该方案与大家的模拟同步解调的测试电路相比,能节省30%的成本和降低20%的噪声,并且占用小得多的电路板面积。

QQ截图20160809164015.png

方案_2A‘

从图的方案2A衍生出一个更低成本的方案2A‘,在性能上几乎没有损失。因为AD7172-2集成有轨到轨输入的片内缓冲器并且可以支撑多种输入类型,负责单端到差分转换的运算放大器和精密分压电阻被删除。 AD7172-2可以接受从AD8220输出的伪差分信号。从而该方案的成本与大家的模拟同步解调的方案相比降低40%以上。

QQ截图20160809164140.png

方案_2B

有备用的方案总是很好的。方案B与方案A很相似,但方案B的单端信号转差分电路采用AD8475精密全差分漏斗放大器完成。这种方法的优点是更高的集成度,比采用分立电阻分压器的失真更小。 AD8475能驱动广泛多样的高精度ADC。

QQ截图20160809164325.png

带SDP-B的EMF-AFE框图

这是一款早期的测试电路板框图,在它上面测试了多种方案,包括用差分模拟输入方式实现了2A和2B,并测试了伪差分模拟输入的2A‘。除此之外,电路板还包括4种驱动器电路:线性稳压电流源,开关模式电流源,光耦合器隔离,iCoupler数字隔离。

QQ截图20160809164448.png

该测试电路由带有图形用户界面的计算机App控制,通过ADI系统演示平台板进行通讯。全部的数据处理工作都在PC机上完成。App还提供4-20毫安电流和频率脉冲输出。这些输出信号可以跟流量计标定系统接口,因此该测试电路板可以连接到电磁流量传感器和流量标定系统中进行性能测试。

 

下图是测试电路板的照片。该板包含三种不同的模拟前端选项,以及四种传感器驱动电路组合选择。因此它没有为电路板尺寸做优化。模拟前端电路位于板的左下方。传感器线圈激励电路位于左上方。可以看到金属外壳封装的功率晶体管,这是线性稳压电流源的一部分,巨大的尺寸。相比较而言,开关模式恒流电路占用小得多的面积。系统演示平台板负责通信和控制位于右下角。它通过一个微型USB接口连接到PC。

QQ图片20160809164622.png

 

过采样EMF-AFE (SDP-B)评估结果

放大器输入短路,折算到输入端峰峰值噪声(μV)和分辨率

该测试电路进行过噪声评估试验。下图的两张图显示了短接前级放大器输入,运行ADC在不同的输出数据速率的电路噪声结果。测试数据显示,折算到放大器输入端噪声在ADC 50赫兹输出数据率条件下仍然小于1μV峰峰值或超过20位的无噪声分辨率。该结果符合我在前面的讨论中提出的噪音预算分配。这意味着,在数据刷新速率高达50赫兹的条件下,该电路仍然可以分辨低至0.005米/秒的瞬时流速。

QQ截图20160809165412.png

连接到流量信号仿真器

下图测试小信号下的噪声和响应。在测试中,电路板通过一个精密分压电阻网络连接到电磁流量计信号仿真器,从而模拟1毫米,2毫米,和5毫米每秒的低流速信号的输出。结果显示了良好的线性响应特性,可以分辨5毫米每秒的瞬时流速。

QQ截图20160809165645.png

 

 

同步解调模数转换样本

由于模拟同步解调电路在测试电路上已经被取消,该功能必须在数字域中被完成。下图的波形图说明了同步解调如何在数字逻辑中被实现。

QQ截图20160809164737.png

计算机App通过ADI系统演示平台板SDP-B发出两个专用定时器控制的线圈驱动器信号1和2来激励电磁流量传感器线圈或模拟器。

 

  • 传感器或模拟器输出与激励信号同步的信号。
  • 测试电路板在SDP-B板的SPI接口的控制,采集放大并数字化的传感器输出信号。
  • 流量算法需要知道的同步解调的逻辑时序。使用AD7172-2 SYNC / ERROR输入引脚采样驱动器控制信号1,在每一个A / D转换结果数据帧里包括该驱动控制信号的逻辑状态。
  • 按照驱动控制信号的逻辑状态把A / D采样两个 组。每个组中剔除尖峰,计算平均值。
  • 正相励磁半周的A/D平均值,减去负相励磁半周的A/D平均值,就得出跟瞬时流速成正比的A/D值。

 

需要做一些进一步处理以得到米/秒的结果,并校准零偏移,增益误差和非线性。累计体积流量也根据管径和运行计算得到。

 

下图以两个不同的流量条件下为例,说明了在数字域里同步解调算法是如何工作的。大家可以看到,A / D采样随时间在上下波动。随着时间切换的矩形波是由于交替激励传感器产生的。为了简化讨论,大家称之为正相和负相半周期。当使用这些A/D样点画统计直方图时,A/ D样点成为两个峰。根据这两个峰之间的距离能够计算出流速。例如,0.5米/秒A/D样点统计直方图的两个峰之间的分离是在0.1米/秒流速条件下的约5倍。对配置中的特定增益和灵敏度的流速约为5600的LSB每(米/秒)。大家传感器和电路的响应从0.1米/秒 到15米/秒流速范围内是相当线性的。

QQ截图20160809165102.png


 
 
3、解决触摸屏上累积流量中途不发生变化的问题:
         为了解决此问题,必须在PLC程序中增加一项能够在累计流量到达***大值前自动将其复位为零后在重新开始累计。根据此项功能要求在累积流量程序段增加如下程序语句:
 
         其中设定累计流量大于或等于 30000m 3 时产生一个复位信号送00181,在 00181 有效时,将leiji变量复位为零。将该程序在 CONCEIPT 修改后,启动程序模拟器模拟该程序的运行,检查累计流量的自动复位功能。在 leiji 变量达到30000时,00181变为有效,leiji变量变为零,随后累计流量值又开始重新累计计算。将该程序重新下载到PLC中后,启动污水处理设备运行正常。瞬时流量、累积流量显示正常。
 
         结语:经运行发现,在触摸屏上的瞬时流量和累计流量显示,瞬时流量显示与电磁流量计显示一致,累计流量开始累计,通过计算累计流量累计值正常。所以此篇文章可以为同类问题提供一种解决方案或参考。

常见问题
资料查询
价格咨询
江苏华云仪表有限企业
销售电话:0517-86996066
企业传真:0517-86883033
手 机:18915186518
E-mail:[email protected]
企业地址:江苏省淮安市金湖县工业园同泰大道99号
XML 地图 | Sitemap 地图